A Deep Learning Object Detection Method for an Efficient Clusters Initializatio

Auteurs : Hassan N. Noura, Ola Salman, Raphaël Couturier, Abderrahmane Sider

Résumé : Clustering is an unsupervised machine learning method grouping data samples into clusters of similar objects. In practice, clustering has been used in numerous applications such as banking customers profiling, document retrieval, image segmentation, and e-commerce recommendation engines. However, the existing clustering techniques present significant limitations, from which is the dependability of their stability on the initialization parameters (e.g. number of clusters, centroids). Different solutions were presented in the literature to overcome this limitation (i.e. internal and external validation metrics). However, these solutions require high computational complexity and memory consumption, especially when dealing with high dimensional data. In this paper, we apply the recent object detection Deep Learning (DL) model, named YOLO-v5, to detect the initial clustering parameters such as the number of clusters with their sizes and possible centroids. Mainly, the proposed solution consists of adding a DL-based initialization phase making the clustering algorithms free of initialization. The results show that the proposed solution can provide near-optimal clusters initialization parameters with low computational and resources overhead compared to existing solutions.

Soumis à arXiv le 28 Avr. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.