Algoritmos de minería de datos en la industria sanitaria

Auteurs : Marta Li Wang

Licence : CC ZERO 1.0

Résumé : In this paper, we review data mining approaches for health applications. Our focus is on hardware-centric approaches. Modern computers consist of multiple processors, each equipped with multiple cores, each with a set of arithmetic/logical units. Thus, a modern computer may be composed of several thousand units capable of doing arithmetic operations like addition and multiplication. Graphic processors, in addition may offer some thousand such units. In both cases, single instruction multiple data and multiple instruction multiple data parallelism must be exploited. We review the principles of algorithms which exploit this parallelism and focus also on the memory issues when multiple processing units access main memory through caches. This is important for many applications of health, such as ECG, EEG, CT, SPECT, fMRI, DTI, ultrasound, microscopy, dermascopy, etc.

Soumis à arXiv le 19 Avr. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.