A Survey on Physarum Polycephalum Intelligent Foraging Behaviour and Bio-Inspired Applications
Auteurs : Abubakr Awad, Wei Pang, David Lusseau, George M. Coghill
Résumé : In recent years, research on Physarum polycephalum has become more popular after Nakagaki et al. (2000) performed their famous experiment showing that Physarum was able to find the shortest route through a maze. Subsequent researches have confirmed the ability of Physarum-inspired algorithms to solve a wide range of NP-hard problems. In contrast to previous reviews that either focus on biological aspects or bio-inspired applications, here we present a comprehensive review that highlights recent Physarum polycephalum biological aspects, mathematical models, and Physarum bio-inspired algorithms and their applications. The novelty of this review stems from our exploration of Physarum intelligent behaviour in competition settings. Further, we have presented our new model to simulate Physarum in competition, where multiple Physarum interact with each other and with their environments. The bio-inspired Physarum in competition algorithms proved to have great potentials for future research.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.