Predicting Customer Lifetime Values -- ecommerce use case
Auteurs : Ziv Pollak
Résumé : Predicting customer future purchases and lifetime value is a key metrics for managing marketing campaigns and optimizing marketing spend. This task is specifically challenging when the relationships between the customer and the firm are of a noncontractual nature and therefore the future purchases need to be predicted based mostly on historical purchases. This work compares two approaches to predict customer future purchases, first using a 'buy-till-you-die' statistical model to predict customer behavior and later using a neural network on the same dataset and comparing the results. This comparison will lead to both quantitative and qualitative analysis of those two methods as well as recommendation on how to proceed in different cases and opportunities for future research.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.