Bayesian Inference Forgetting

Auteurs : Shaopeng Fu, Fengxiang He, Yue Xu, Dacheng Tao

Résumé : The right to be forgotten has been legislated in many countries but the enforcement in machine learning would cause unbearable costs: companies may need to delete whole models trained from massive resources because of single individual requests. Existing works propose to remove the influence of the requested datums on the learned models via its influence function which is no longer naturally well-defined in Bayesian inference. To address this problem, this paper proposes a {\it Bayesian inference forgetting} (BIF) framework to extend the applicable domain to Bayesian inference. In the BIF framework, we develop forgetting algorithms for variational inference and Markov chain Monte Carlo. We show that our algorithms can provably remove the influence of single datums on the learned models. Theoretical analysis demonstrates that our algorithms have guaranteed generalizability. Experiments of Gaussian mixture models on the synthetic dataset and Bayesian neural networks on the Fashion-MNIST dataset verify the feasibility of our methods. The source code package is available at \url{https://github.com/fshp971/BIF}.

Soumis à arXiv le 16 Jan. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.