The Impact of a STEM-based Entrepreneurship Program on the Entrepreneurial Intention of Secondary School Female Students
Auteurs : Mojtaba Shahin, Olivia Ilic, Chris Gonsalvez, Jon Whittle
Résumé : Despite dedicated effort and research in the last two decades, the entrepreneurship field is still limited by little evidence-based knowledge of the impacts of entrepreneurship programs on the entrepreneurial intention of students in pre-university levels of study. Further, gender equity continues to be an issue in the entrepreneurial sector, particularly in STEM-focused entrepreneurship. In this context, this study was designed to explore the effects of a one-day female-focused STEM-based entrepreneurship program (for brevity, we call it the OzGirlsEntrepreneurship program) on the entrepreneurial intention of secondary school female students. The study collected data from two surveys completed by 193 secondary school female students, aged 14-16 years, who participated in the OzGirlsEntrepreneurship program. This program encouraged girls to develop and implement creative computational solutions to socially relevant problems, with an Internet of Things (IoT) component using the micro:bit device. The findings reveal that a key factor in the development of entrepreneurial attitudes in young female students is associated with soft-skills development, particularly in the areas of creative thinking, risk-taking, problem-solving, and leadership development. The importance of meaningful human connections, including positive role modelling and peer to peer learning were also important factors in fostering entrepreneurial intent. With these factors in mind, our findings highlight that the OzGirlsEntrepreneurship program substantially increased the entrepreneurial intention of secondary school female students. In addition, this study offers actionable implications and recommendations to develop and deliver entrepreneurship education programs for secondary school level students.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.