Resolution Dependant GAN Interpolation for Controllable Image Synthesis Between Domains
Auteurs : Justin N. M. Pinkney, Doron Adler
Résumé : GANs can generate photo-realistic images from the domain of their training data. However, those wanting to use them for creative purposes often want to generate imagery from a truly novel domain, a task which GANs are inherently unable to do. It is also desirable to have a level of control so that there is a degree of artistic direction rather than purely curation of random results. Here we present a method for interpolating between generative models of the StyleGAN architecture in a resolution dependant manner. This allows us to generate images from an entirely novel domain and do this with a degree of control over the nature of the output.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.