Helpfulness as a Key Metric of Human-Robot Collaboration

Auteurs : Richard G. Freedman, Steven J. Levine, Brian C. Williams, Shlomo Zilberstein

Accepted for presentation at the AAAI 2020 Fall Symposium Series, in the symposium for Artificial Intelligence for Human-Robot Interaction: Trust & Explainability in Artificial Intelligence for Human-Robot Interaction

Résumé : As robotic teammates become more common in society, people will assess the robots' roles in their interactions along many dimensions. One such dimension is effectiveness: people will ask whether their robotic partners are trustworthy and effective collaborators. This begs a crucial question: how can we quantitatively measure the helpfulness of a robotic partner for a given task at hand? This paper seeks to answer this question with regards to the interactive robot's decision making. We describe a clear, concise, and task-oriented metric applicable to many different planning and execution paradigms. The proposed helpfulness metric is fundamental to assessing the benefit that a partner has on a team for a given task. In this paper, we define helpfulness, illustrate it on concrete examples from a variety of domains, discuss its properties and ramifications for planning interactions with humans, and present preliminary results.

Soumis à arXiv le 10 Oct. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.