Randomized Last-Level Caches Are Still Vulnerable to Cache Side-Channel Attacks! But We Can Fix It

Auteurs : Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, Peng Liu

2021 IEEE Symposium on Security and Privacy (SP)

Résumé : Cache randomization has recently been revived as a promising defense against conflict-based cache side-channel attacks. As two of the latest implementations, CEASER-S and ScatterCache both claim to thwart conflict-based cache side-channel attacks using randomized skewed caches. Unfortunately, our experiments show that an attacker can easily find a usable eviction set within the chosen remap period of CEASER-S and increasing the number of partitions without dynamic remapping, such as ScatterCache, cannot eliminate the threat. By quantitatively analyzing the access patterns left by various attacks in the LLC, we have newly discovered several problems with the hypotheses and implementations of randomized caches, which are also overlooked by the research on conflict-based cache side-channel attack. However, cache randomization is not a false hope and it is an effective defense that should be widely adopted in future processors. The newly discovered problems are corresponding to flaws associated with the existing implementation of cache randomization and are fixable. Several new defense techniques are proposed in this paper. our experiments show that all the newly discovered vulnerabilities of existing randomized caches are fixed within the current performance budget. We also argue that randomized set-associative caches can be sufficiently strengthened and possess a better chance to be actually adopted in commercial processors than their skewed counterparts as they introduce less overhaul to the existing cache structure.

Soumis à arXiv le 05 Aoû. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.