The Go Transformer: Natural Language Modeling for Game Play

Auteurs : Matthew Ciolino, David Noever, Josh Kalin

8 Pages, 5 Figures, 1 Table, IEEE Format, Ai4i 2020

Résumé : This work applies natural language modeling to generate plausible strategic moves in the ancient game of Go. We train the Generative Pretrained Transformer (GPT-2) to mimic the style of Go champions as archived in Smart Game Format (SGF), which offers a text description of move sequences. The trained model further generates valid but previously unseen strategies for Go. Because GPT-2 preserves punctuation and spacing, the raw output of the text generator provides inputs to game visualization and creative patterns, such as the Sabaki project's game engine using auto-replays. Results demonstrate that language modeling can capture both the sequencing format of championship Go games and their strategic formations. Compared to random game boards, the GPT-2 fine-tuning shows efficient opening move sequences favoring corner play over less advantageous center and side play. Game generation as a language modeling task offers novel approaches to more than 40 other board games where historical text annotation provides training data (e.g., Amazons & Connect 4/6).

Soumis à arXiv le 07 Jul. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.