Menes: Towards a Generic, Fully-Automated Test and Validation Platform for Wireless Networks

Auteurs : Kerim Gökarslan

Résumé : A major step in developing robust wireless systems is to test and validate the design under a variety of circumstances. As wireless networks become more complex, it is impractical to perform testing on a real deployment. As a result, the network administrators rely on network simulators or network emulators to validate their configurations and design. Unfortunately, network simulation falls short per it requires users to model the network behavior analytically. On the other hand, network emulation allows users to employ real network applications on virtualized network devices. Despite their complex design, the existing network emulation solutions miss full-scale automation rather they rely on experienced users to write complex configuration scripts making testing. Therefore, the validation process is prone to human operator errors. Furthermore, they require a significant amount of computational resources that might not be feasible for many users. Moreover, most network emulators focus on lower layers of the network thus requiring users to employ their own network applications to control and measure network performance. To overcome these challenges, we propose a novel wireless network emulation platform, the system, that provides users a unified, high-level configuration interface for different layers of wireless networks to reduce management complexities of network emulators while having a generic, fully-automated platform. Menes is a generic, full-stack, fully-automated test and validation platform that empowers existing state-of-the-art emulation, virtualization, and network applications including performance measurement tools. We then provide an implementation of Menes based on the EMANE with Docker. Our extensive evaluations show that the system requires much less computing resources, significantly decreases CAPEX and OPEX, and greatly extensible for different use cases.

Soumis à arXiv le 03 Jui. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.