Mathematical models for pain: a systematic review
Auteurs : Victoria Ashley Lang, Torbjörn Lundh, Max Ortiz-Catalan
Résumé : There is no single prevailing theory of pain that explains its origin, qualities, and alleviation. Although many studies have investigated various molecular targets for pain management, few have attempted to examine the etiology or working mechanisms of pain through mathematical or computational techniques. In this systematic review, we identified mathematical and computational approaches for characterizing pain. The databases queried were Science Direct and PubMed, yielding 560 articles published prior to January 1st, 2020. After screening for inclusion of mathematical or computational models of pain, 31 articles were deemed relevant. Most of the reviewed articles utilized classification algorithms to categorize pain and no-pain conditions. We found the literature heavily focused on the application of existing models or machine learning algorithms to identify the presence or absence of pain, rather than to explore features of pain that may be used for diagnostics and treatment. Although understudied, the development of mathematical models may augment the current understanding of pain by providing directions for testable hypotheses of its underlying mechanisms.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.