Mathematical models for pain: a systematic review

Auteurs : Victoria Ashley Lang, Torbjörn Lundh, Max Ortiz-Catalan

arXiv: 2006.01745v1 - DOI (q-bio.NC)
15 pages, 3 figures

Résumé : There is no single prevailing theory of pain that explains its origin, qualities, and alleviation. Although many studies have investigated various molecular targets for pain management, few have attempted to examine the etiology or working mechanisms of pain through mathematical or computational techniques. In this systematic review, we identified mathematical and computational approaches for characterizing pain. The databases queried were Science Direct and PubMed, yielding 560 articles published prior to January 1st, 2020. After screening for inclusion of mathematical or computational models of pain, 31 articles were deemed relevant. Most of the reviewed articles utilized classification algorithms to categorize pain and no-pain conditions. We found the literature heavily focused on the application of existing models or machine learning algorithms to identify the presence or absence of pain, rather than to explore features of pain that may be used for diagnostics and treatment. Although understudied, the development of mathematical models may augment the current understanding of pain by providing directions for testable hypotheses of its underlying mechanisms.

Soumis à arXiv le 02 Jui. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.