How Many Freemasons Are There? The Consensus Voting Mechanism in Metric Spaces

Auteurs : Mashbat Suzuki, Adrian Vetta

Résumé : We study the evolution of a social group when admission to the group is determined via consensus or unanimity voting. In each time period, two candidates apply for membership and a candidate is selected if and only if all the current group members agree. We apply the spatial theory of voting where group members and candidates are located in a metric space and each member votes for its closest (most similar) candidate. Our interest focuses on the expected cardinality of the group after $T$ time periods. To evaluate this we study the geometry inherent in dynamic consensus voting over a metric space. This allows us to develop a set of techniques for lower bounding and upper bounding the expected cardinality of a group. We specialize these methods for two-dimensional metric spaces. For the unit ball the expected cardinality of the group after $T$ time periods is $\Theta(T^{1/8})$. In sharp contrast, for the unit square the expected cardinality is at least $\Omega(\ln T)$ but at most $O(\ln T \cdot \ln\ln T )$.

Soumis à arXiv le 26 Mai. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.