egg: Fast and Extensible Equality Saturation
Auteurs : Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, Pavel Panchekha
Résumé : An e-graph efficiently represents a congruence relation over many expressions. Although they were originally developed in the late 1970s for use in automated theorem provers, a more recent technique known as equality saturation repurposes e-graphs to implement state-of-the-art, rewrite-driven compiler optimizations and program synthesizers. However, e-graphs remain unspecialized for this newer use case. Equality saturation workloads exhibit distinct characteristics and often require ad-hoc e-graph extensions to incorporate transformations beyond purely syntactic rewrites. This work contributes two techniques that make e-graphs fast and extensible, specializing them to equality saturation. A new amortized invariant restoration technique called rebuilding takes advantage of equality saturation's distinct workload, providing asymptotic speedups over current techniques in practice. A general mechanism called e-class analyses integrates domain-specific analyses into the e-graph, reducing the need for ad hoc manipulation. We implemented these techniques in a new open-source library called egg. Our case studies on three previously published applications of equality saturation highlight how egg's performance and flexibility enable state-of-the-art results across diverse domains.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.