Moving Metric Detection and Alerting System at eBay

Auteurs : Zezhong Zhang, Keyu Nie, Ted Tao Yuan

The work is oral presented on the AAAI-20 Workshop on Cloud Intelligence, 2020

Résumé : At eBay, there are thousands of product health metrics for different domain teams to monitor. We built a two-phase alerting system to notify users with actionable alerts based on anomaly detection and alert retrieval. In the first phase, we developed an efficient anomaly detection algorithm, called Moving Metric Detector (MMD), to identify potential alerts among metrics with distribution agnostic criteria. In the second alert retrieval phase, we built additional logic with feedbacks to select valid actionable alerts with point-wise ranking model and business rules. Compared with other trend and seasonality decomposition methods, our decomposer is faster and better to detect anomalies in unsupervised cases. Our two-phase approach dramatically improves alert precision and avoids alert spamming in eBay production.

Soumis à arXiv le 06 Avr. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.