Application of Deep Q-Network in Portfolio Management

Auteurs : Ziming Gao, Yuan Gao, Yi Hu, Zhengyong Jiang, Jionglong Su

arXiv: 2003.06365v1 - DOI (q-fin.PM)

Résumé : Machine Learning algorithms and Neural Networks are widely applied to many different areas such as stock market prediction, face recognition and population analysis. This paper will introduce a strategy based on the classic Deep Reinforcement Learning algorithm, Deep Q-Network, for portfolio management in stock market. It is a type of deep neural network which is optimized by Q Learning. To make the DQN adapt to financial market, we first discretize the action space which is defined as the weight of portfolio in different assets so that portfolio management becomes a problem that Deep Q-Network can solve. Next, we combine the Convolutional Neural Network and dueling Q-net to enhance the recognition ability of the algorithm. Experimentally, we chose five lowrelevant American stocks to test the model. The result demonstrates that the DQN based strategy outperforms the ten other traditional strategies. The profit of DQN algorithm is 30% more than the profit of other strategies. Moreover, the Sharpe ratio associated with Max Drawdown demonstrates that the risk of policy made with DQN is the lowest.

Soumis à arXiv le 13 Mar. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.