Opportunities and Challenges in Deep Learning Methods on Electrocardiogram Data: A Systematic Review
Auteurs : Shenda Hong, Yuxi Zhou, Junyuan Shang, Cao Xiao, Jimeng Sun
Résumé : Objective: To conduct a systematic review of deep learning methods on Electrocardiogram (ECG) data from the perspective of model architecture and their application task. Methods: First, we extensively searched papers deploying deep learning (deep neural network networks) on ECG data that published between January 1st 2010 and September 30th 2019 from Google Scholar, PubMed and DBLP. Then we analyze them in three aspects including task, model and data. Finally, we conclude unresolved challenges and problems that existing models can not handle well. Results: The total number of papers is 124, among them 97 papers are published after in recent two years. Almost all kinds of common deep learning architectures have been used in ECG analytics tasks like disease detection/classification, annotation/localization, sleep staging, biometric human identification, denoising and so on. Conclusion: The number of works about deep learning on ECG data is growing explosively in recent years. Indeed, these works have achieve a far more better performance in terms of accuracy. However, there are some new challenges and problems like interpretability, scalability, efficiency, which need to be addressed and paid more attention. Moreover, it is also worth to investigate by discovering new interesting applications from both the dataset view and the method view. Significance: This paper summarizes existing deep learning methods on modeling ECG data from multiple views, while also point out existing challenges and problems, while can become potential research direction in the future.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.