What do Asian Religions Have in Common? An Unsupervised Text Analytics Exploration

Auteurs : Preeti Sah, Ernest Fokoué

18 pages, 22 figures
Licence : CC BY 4.0

Résumé : The main source of various religious teachings is their sacred texts which vary from religion to religion based on different factors like the geographical location or time of the birth of a particular religion. Despite these differences, there could be similarities between the sacred texts based on what lessons it teaches to its followers. This paper attempts to find the similarity using text mining techniques. The corpus consisting of Asian (Tao Te Ching, Buddhism, Yogasutra, Upanishad) and non-Asian (four Bible texts) is used to explore findings of similarity measures like Euclidean, Manhattan, Jaccard and Cosine on raw Document Term Frequency [DTM], normalized DTM which reveals similarity based on word usage. The performance of Supervised learning algorithms like K-Nearest Neighbor [KNN], Support Vector Machine [SVM] and Random Forest is measured based on its accuracy to predict correct scared text for any given chapter in the corpus. The K-means clustering visualizations on Euclidean distances of raw DTM reveals that there exists a pattern of similarity among these sacred texts with Upanishads and Tao Te Ching is the most similar text in the corpus.

Soumis à arXiv le 20 Déc. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.