Joint Embedding Learning of Educational Knowledge Graphs
Auteurs : Siyu Yao, Ruijie Wang, Shen Sun, Derui Bu, Jun Liu
Résumé : As an efficient model for knowledge organization, the knowledge graph has been widely adopted in several fields, e.g., biomedicine, sociology, and education. And there is a steady trend of learning embedding representations of knowledge graphs to facilitate knowledge graph construction and downstream tasks. In general, knowledge graph embedding techniques aim to learn vectorized representations which preserve the structural information of the graph. And conventional embedding learning models rely on structural relationships among entities and relations. However, in educational knowledge graphs, structural relationships are not the focus. Instead, rich literals of the graphs are more valuable. In this paper, we focus on this problem and propose a novel model for embedding learning of educational knowledge graphs. Our model considers both structural and literal information and jointly learns embedding representations. Three experimental graphs were constructed based on an educational knowledge graph which has been applied in real-world teaching. We conducted two experiments on the three graphs and other common benchmark graphs. The experimental results proved the effectiveness of our model and its superiority over other baselines when processing educational knowledge graphs.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.