Bayesian Learning of Occupancy Grids

Auteurs : Christopher Robbiano, Edwin K. P. Chong, Louis L. Scharf, Mahmood R. Azimi-Sadjadi, Ali Pezeshki, Saeid Ahmadinia

Résumé : Occupancy grids encode for hot spots on a map that is represented by a two dimensional grid of disjoint cells. The problem is to recursively update the probability that each cell in the grid is occupied, based on a sequence of sensor measurements. In this paper, we provide a new Bayesian framework for generating these probabilities that does not assume statistical independence between the occupancy state of grid cells. This approach is made analytically tractable through the use of binary asymmetric channel models that capture the errors associated with observing the occupancy state of a grid cell. Binary valued measurement vectors are the output of a physical layer detector in an imaging, radar, sonar, or other sensory system. We compare the performance of the proposed framework to that of the classical formulation for occupancy grids. The results show that the proposed framework identifies occupancy grids with lower false alarm and miss rates, and requires fewer observations of the surrounding area to generate an accurate estimate of occupancy probabilities when compared to classical formulations.

Soumis à arXiv le 18 Nov. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.