Enriching Conversation Context in Retrieval-based Chatbots

Auteurs : Amir Vakili Tahami, Azadeh Shakery

8 pages, 1 figure, 3 tables

Résumé : Work on retrieval-based chatbots, like most sequence pair matching tasks, can be divided into Cross-encoders that perform word matching over the pair, and Bi-encoders that encode the pair separately. The latter has better performance, however since candidate responses cannot be encoded offline, it is also much slower. Lately, multi-layer transformer architectures pre-trained as language models have been used to great effect on a variety of natural language processing and information retrieval tasks. Recent work has shown that these language models can be used in text-matching scenarios to create Bi-encoders that perform almost as well as Cross-encoders while having a much faster inference speed. In this paper, we expand upon this work by developing a sequence matching architecture that %takes into account contexts in the training dataset at inference time. utilizes the entire training set as a makeshift knowledge-base during inference. We perform detailed experiments demonstrating that this architecture can be used to further improve Bi-encoders performance while still maintaining a relatively high inference speed.

Soumis à arXiv le 06 Nov. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.