Accurate Layerwise Interpretable Competence Estimation

Auteurs : Vickram Rajendran, William LeVine

Proceedings of the 33rd Conference in Neural Information Processing Systems (2019), 15 pages

Résumé : Estimating machine learning performance 'in the wild' is both an important and unsolved problem. In this paper, we seek to examine, understand, and predict the pointwise competence of classification models. Our contributions are twofold: First, we establish a statistically rigorous definition of competence that generalizes the common notion of classifier confidence; second, we present the ALICE (Accurate Layerwise Interpretable Competence Estimation) Score, a pointwise competence estimator for any classifier. By considering distributional, data, and model uncertainty, ALICE empirically shows accurate competence estimation in common failure situations such as class-imbalanced datasets, out-of-distribution datasets, and poorly trained models. Our contributions allow us to accurately predict the competence of any classification model given any input and error function. We compare our score with state-of-the-art confidence estimators such as model confidence and Trust Score, and show significant improvements in competence prediction over these methods on datasets such as DIGITS, CIFAR10, and CIFAR100.

Soumis à arXiv le 24 Oct. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.