Kidney Recognition in CT Using YOLOv3

Auteurs : Andréanne Lemay

Résumé : Organ localization can be challenging considering the heterogeneity of medical images and the biological diversity from one individual to another. The contribution of this paper is to overview the performance of the object detection model, YOLOv3, on kidney localization in 2D and in 3D from CT scans. The model obtained a 0.851 Dice score in 2D and 0.742 in 3D. The SSD, a similar state-of-the-art object detection model, showed similar scores on the test set. YOLOv3 and SSD demonstrated the ability to detect kidneys on a wide variety of CT scans including patients suffering from different renal conditions.

Soumis à arXiv le 03 Oct. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.