CASA-NLU: Context-Aware Self-Attentive Natural Language Understanding for Task-Oriented Chatbots

Auteurs : Arshit Gupta, Peng Zhang, Garima Lalwani, Mona Diab

To appear at EMNLP 2019

Résumé : Natural Language Understanding (NLU) is a core component of dialog systems. It typically involves two tasks - intent classification (IC) and slot labeling (SL), which are then followed by a dialogue management (DM) component. Such NLU systems cater to utterances in isolation, thus pushing the problem of context management to DM. However, contextual information is critical to the correct prediction of intents and slots in a conversation. Prior work on contextual NLU has been limited in terms of the types of contextual signals used and the understanding of their impact on the model. In this work, we propose a context-aware self-attentive NLU (CASA-NLU) model that uses multiple signals, such as previous intents, slots, dialog acts and utterances over a variable context window, in addition to the current user utterance. CASA-NLU outperforms a recurrent contextual NLU baseline on two conversational datasets, yielding a gain of up to 7% on the IC task for one of the datasets. Moreover, a non-contextual variant of CASA-NLU achieves state-of-the-art performance for IC task on standard public datasets - Snips and ATIS.

Soumis à arXiv le 18 Sep. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.