Learning Controls Using Cross-Modal Representations: Bridging Simulation and Reality for Drone Racing

Auteurs : Rogerio Bonatti, Ratnesh Madaan, Vibhav Vineet, Sebastian Scherer, Ashish Kapoor

Résumé : Machines are a long way from robustly solving open-world perception-control tasks, such as first-person view (FPV) drone racing. While recent advances in Machine Learning, especially Reinforcement and Imitation Learning show promise, they are constrained by the need of large amounts of difficult to collect real-world data for learning robust behaviors in diverse scenarios. In this work we propose to learn rich representations and policies by leveraging unsupervised data, such as video footage from an FPV drone, together with easy to generate simulated labeled data. Our approach takes a cross-modal perspective, where separate modalities correspond to the raw camera sensor data and the system states relevant to the task, such as the relative pose gates to the UAV. We fuse both data modalities into a novel factored architecture that learns a joint low-dimensional representation via Variational Auto Encoders. Such joint representations allow us to leverage rich labeled information from simulations together with the diversity of possible experiences via the unsupervised real-world data. We present experiments in simulation that provide insights into the rich latent spaces learned with our proposed representations, and also show that the use of our cross-modal architecture improves control policy performance in over 5X in comparison with end-to-end learning or purely unsupervised feature extractors. Finally, we present real-life results for drone navigation, showing that the learned representations and policies can generalize across simulation and reality.

Soumis à arXiv le 16 Sep. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.