Future competitive bioenergy technologies in the German heat sector: Findings from an economic optimization approach
Auteurs : Matthias Jordan, Volker Lenz, Markus Millinger, Katja Oehmichen, Daniela Thrän
Résumé : Meeting the defined greenhouse gas (GHG) reduction targets in Germany is only possible by switching to renewable technologies in the energy sector. A major share of that reduction needs to be covered by the heat sector, which accounts for ~35% of the energy based emissions in Germany. Biomass is the renewable key player in the heterogeneous heat sector today. Its properties such as weather independency, simple storage and flexible utilization open up a wide field of applications for biomass. However, in a future heat sector fulfilling GHG reduction targets and energy sectors being increasingly connected: which bioenergy technology concepts are competitive options against other renewable heating systems? In this paper, the cost optimal allocation of the limited German biomass potential is investigated under longterm scenarios using a mathematical optimization approach. The model results show that bioenergy can be a competitive option in the future. Especially the use of biomass from residues can be highly competitive in hybrid combined heat and power (CHP) pellet combustion plants in the private household sector. However, towards 2050, wood based biomass use in high temperature industry applications is found to be the most cost efficient way to reduce heat based emissions by 95% in 2050.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.