Learning Wear Patterns on Footwear Outsoles Using Convolutional Neural Networks
Auteurs : Xavier Francis, Hamid Sharifzadeh, Angus Newton, Nilufar Baghaei, Soheil Varastehpour
Résumé : Footwear outsoles acquire characteristics unique to the individual wearing them over time. Forensic scientists largely rely on their skills and knowledge, gained through years of experience, to analyse such characteristics on a shoeprint. In this work, we present a convolutional neural network model that can predict the wear pattern on a unique dataset of shoeprints that captures the life and wear of a pair of shoes. We present an additional architecture able to reconstruct the outsole back to its original state on a given week, and provide empirical evaluations of the performance of both models.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.