The Curious Case of Machine Learning In Malware Detection
Auteurs : Sherif Saad, William Briguglio, Haytham Elmiligi
Résumé : In this paper, we argue that machine learning techniques are not ready for malware detection in the wild. Given the current trend in malware development and the increase of unconventional malware attacks, we expect that dynamic malware analysis is the future for antimalware detection and prevention systems. A comprehensive review of machine learning for malware detection is presented. Then, we discuss how malware detection in the wild present unique challenges for the current state-of-the-art machine learning techniques. We defined three critical problems that limit the success of malware detectors powered by machine learning in the wild. Next, we discuss possible solutions to these challenges and present the requirements of next-generation malware detection. Finally, we outline potential research directions in machine learning for malware detection.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.