Effect of E-cigarette Use and Social Network on Smoking Behavior Change: An agent-based model of E-cigarette and Cigarette Interaction

Auteurs : Yang Qin, Rojiemiahd Edjoc, Nathaniel D Osgood

arXiv: 1905.03611v1 - DOI (q-bio.OT)
10 pages, SBP-BRiMS 2019

Résumé : Despite a general reduction in smoking in many areas of the developed world, it remains one of the biggest public health threats. As an alternative to tobacco, the use of electronic cigarettes (ECig) has been increased dramatically over the last decade. ECig use is hypothesized to impact smoking behavior through several pathways, not only as a means of quitting cigarettes and lowering risk of relapse, but also as both an alternative nicotine delivery device to cigarettes, as a visible use of nicotine that can lead to imitative behavior in the form of smoking, and as a gateway nicotine delivery technology that can build high levels of nicotine tolerance and pave the way for initiation of smoking. Evidence regarding the effect of ECig use on smoking behavior change remains inconclusive. To address these challenges, we built an agent-based model (ABM) of smoking and ECig use to examine the effects of ECig use on smoking behavior change. The impact of social network (SN) on the initiation of smoking and ECig use were also explored. Findings from the simulation suggest that the use of ECig generates substantially lower prevalence of current smoker (PCS), which demonstrates the potential for reducing smoking and lowering the risk of relapse. The effects of proximity-based influences within SN increases the prevalence of current ECig user (PCEU). The model also suggests the importance of improved understanding of drivers in cessation and relapse in ECig use, in light of findings that such aspects of behavior change may notably influence smoking behavior change and burden.

Soumis à arXiv le 03 Mai. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.