Trend-Based Networking Driven by Big Data Telemetry for SDN and Traditional Networks
Auteurs : Ankur Jain, Arohi Gupta, Ashutosh Gupta, Dewang Gedia, Leidy Pérez, Levi Perigo, Rahil Gandotra, Sanjay Murthy
Résumé : Organizations face a challenge of accurately analyzing network data and providing automated action based on the observed trend. This trend-based analytics is beneficial to minimize the downtime and improve the performance of the network services, but organizations use different network management tools to understand and visualize the network traffic with limited abilities to dynamically optimize the network. This research focuses on the development of an intelligent system that leverages big data telemetry analysis in Platform for Network Data Analytics (PNDA) to enable comprehensive trend-based networking decisions. The results include a graphical user interface (GUI) done via a web application for effortless management of all subsystems, and the system and application developed in this research demonstrate the true potential for a scalable system capable of effectively benchmarking the network to set the expected behavior for comparison and trend analysis. Moreover, this research provides a proof of concept of how trend analysis results are actioned in both a traditional network and a software-defined network (SDN) to achieve dynamic, automated load balancing.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.