Building an Efficient Intrusion Detection System Based on Feature Selection and Ensemble Classifier

Auteurs : Yuyang Zhou, Guang Cheng, Shanqing Jiang, Mian Dai

To be published in Computer Networks at https://doi.org/10.1016/j.comnet.2020.107247

Résumé : Intrusion detection system (IDS) is one of extensively used techniques in a network topology to safeguard the integrity and availability of sensitive assets in the protected systems. Although many supervised and unsupervised learning approaches from the field of machine learning have been used to increase the efficacy of IDSs, it is still a problem for existing intrusion detection algorithms to achieve good performance. First, lots of redundant and irrelevant data in high-dimensional datasets interfere with the classification process of an IDS. Second, an individual classifier may not perform well in the detection of each type of attacks. Third, many models are built for stale datasets, making them less adaptable for novel attacks. Thus, we propose a new intrusion detection framework in this paper, and this framework is based on the feature selection and ensemble learning techniques. In the first step, a heuristic algorithm called CFS-BA is proposed for dimensionality reduction, which selects the optimal subset based on the correlation between features. Then, we introduce an ensemble approach that combines C4.5, Random Forest (RF), and Forest by Penalizing Attributes (Forest PA) algorithms. Finally, voting technique is used to combine the probability distributions of the base learners for attack recognition. The experimental results, using NSL-KDD, AWID, and CIC-IDS2017 datasets, reveal that the proposed CFS-BA-Ensemble method is able to exhibit better performance than other related and state of the art approaches under several metrics.

Soumis à arXiv le 02 Avr. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.