Accelerating Rescaled Gradient Descent: Fast Optimization of Smooth Functions
Auteurs : Ashia Wilson, Lester Mackey, Andre Wibisono
Résumé : We present a family of algorithms, called descent algorithms, for optimizing convex and non-convex functions. We also introduce a new first-order algorithm, called rescaled gradient descent (RGD), and show that RGD achieves a faster convergence rate than gradient descent provided the function is strongly smooth -- a natural generalization of the standard smoothness assumption on the objective function. When the objective function is convex, we present two novel frameworks for "accelerating" descent methods, one in the style of Nesterov and the other in the style of Monteiro and Svaiter, using a single Lyapunov. Rescaled gradient descent can be accelerated under the same strong smoothness assumption using both frameworks. We provide several examples of strongly smooth loss functions in machine learning and numerical experiments that verify our theoretical findings. We also present several extensions of our novel Lyapunov framework, including deriving optimal universal tensor methods and extending our framework to the coordinate setting.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.