Noise Contrastive Estimation for Scalable Linear Models for One-Class Collaborative Filtering

Auteurs : Ga Wu, Maksims Volkovs, Chee Loong Soon, Scott Sanner, Himanshu Rai

8 pages

Résumé : Previous highly scalable one-class collaborative filtering methods such as Projected Linear Recommendation (PLRec) have advocated using fast randomized SVD to embed items into a latent space, followed by linear regression methods to learn personalized recommendation models per user. Unfortunately, naive SVD embedding methods often exhibit a popularity bias that skews the ability to accurately embed niche items. To address this, we leverage insights from Noise Contrastive Estimation (NCE) to derive a closed-form, efficiently computable "depopularized" embedding. While this method is not ideal for direct recommendation using methods like PureSVD since popularity still plays an important role in recommendation, we find that embedding followed by linear regression to learn personalized user models in a novel method we call NCE-PLRec leverages the improved item embedding of NCE while correcting for its popularity unbiasing in final recommendations. An analysis of the recommendation popularity distribution demonstrates that NCE-PLRec uniformly distributes its recommendations over the popularity spectrum while other methods exhibit distinct biases towards specific popularity subranges, thus artificially restricting their recommendations. Empirically, NCE-PLRec outperforms state-of-the-art methods as well as various ablations of itself on a variety of large-scale recommendation datasets.

Soumis à arXiv le 02 Nov. 2018

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.