Evaluation of Preference of Multimedia Content using Deep Neural Networks for Electroencephalography

Auteurs : Seong-Eun Moon, Soobeom Jang, Jong-Seok Lee

Accepted for the 10th International Conference on Quality of Multimedia Experience (QoMEX 2018)

Résumé : Evaluation of quality of experience (QoE) based on electroencephalography (EEG) has received great attention due to its capability of real-time QoE monitoring of users. However, it still suffers from rather low recognition accuracy. In this paper, we propose a novel method using deep neural networks toward improved modeling of EEG and thereby improved recognition accuracy. In particular, we aim to model spatio-temporal characteristics relevant for QoE analysis within learning models. The results demonstrate the effectiveness of the proposed method.

Soumis à arXiv le 11 Sep. 2018

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.