Why are Sequence-to-Sequence Models So Dull? Understanding the Low-Diversity Problem of Chatbots
Auteurs : Shaojie Jiang, Maarten de Rijke
Résumé : Diversity is a long-studied topic in information retrieval that usually refers to the requirement that retrieved results should be non-repetitive and cover different aspects. In a conversational setting, an additional dimension of diversity matters: an engaging response generation system should be able to output responses that are diverse and interesting. Sequence-to-sequence (Seq2Seq) models have been shown to be very effective for response generation. However, dialogue responses generated by Seq2Seq models tend to have low diversity. In this paper, we review known sources and existing approaches to this low-diversity problem. We also identify a source of low diversity that has been little studied so far, namely model over-confidence. We sketch several directions for tackling model over-confidence and, hence, the low-diversity problem, including confidence penalties and label smoothing.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.