From POS tagging to dependency parsing for biomedical event extraction
Auteurs : Dat Quoc Nguyen, Karin Verspoor
Résumé : Background: Given the importance of relation or event extraction from biomedical research publications to support knowledge capture and synthesis, and the strong dependency of approaches to this information extraction task on syntactic information, it is valuable to understand which approaches to syntactic processing of biomedical text have the highest performance. Results: We perform an empirical study comparing state-of-the-art traditional feature-based and neural network-based models for two core natural language processing tasks of part-of-speech (POS) tagging and dependency parsing on two benchmark biomedical corpora, GENIA and CRAFT. To the best of our knowledge, there is no recent work making such comparisons in the biomedical context; specifically no detailed analysis of neural models on this data is available. Experimental results show that in general, the neural models outperform the feature-based models on two benchmark biomedical corpora GENIA and CRAFT. We also perform a task-oriented evaluation to investigate the influences of these models in a downstream application on biomedical event extraction, and show that better intrinsic parsing performance does not always imply better extrinsic event extraction performance. Conclusion: We have presented a detailed empirical study comparing traditional feature-based and neural network-based models for POS tagging and dependency parsing in the biomedical context, and also investigated the influence of parser selection for a biomedical event extraction downstream task. Availability of data and material: We make the retrained models available at https://github.com/datquocnguyen/BioPosDep
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.