A Practical Method for Solving Contextual Bandit Problems Using Decision Trees
Auteurs : Adam N. Elmachtoub, Ryan McNellis, Sechan Oh, Marek Petrik
Résumé : Many efficient algorithms with strong theoretical guarantees have been proposed for the contextual multi-armed bandit problem. However, applying these algorithms in practice can be difficult because they require domain expertise to build appropriate features and to tune their parameters. We propose a new method for the contextual bandit problem that is simple, practical, and can be applied with little or no domain expertise. Our algorithm relies on decision trees to model the context-reward relationship. Decision trees are non-parametric, interpretable, and work well without hand-crafted features. To guide the exploration-exploitation trade-off, we use a bootstrapping approach which abstracts Thompson sampling to non-Bayesian settings. We also discuss several computational heuristics and demonstrate the performance of our method on several datasets.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.