Understanding Black-box Predictions via Influence Functions

Auteurs : Pang Wei Koh, Percy Liang

Résumé : How can we explain the predictions of a black-box model? In this paper, we use influence functions -- a classic technique from robust statistics -- to trace a model's prediction through the learning algorithm and back to its training data, identifying the points most responsible for a given prediction. Applying ideas from second-order optimization, we scale up influence functions to modern machine learning settings and show that they can be applied to high-dimensional black-box models, even in non-convex and non-differentiable settings. We give a simple, efficient implementation that requires only oracle access to gradients and Hessian-vector products. On linear models and convolutional neural networks, we demonstrate that influence functions are useful for many different purposes: to understand model behavior, debug models and detect dataset errors, and even identify and exploit vulnerabilities to adversarial training-set attacks.

Soumis à arXiv le 14 Mar. 2017

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.