Annealing Gaussian into ReLU: a New Sampling Strategy for Leaky-ReLU RBM
Auteurs : Chun-Liang Li, Siamak Ravanbakhsh, Barnabas Poczos
Résumé : Restricted Boltzmann Machine (RBM) is a bipartite graphical model that is used as the building block in energy-based deep generative models. Due to numerical stability and quantifiability of the likelihood, RBM is commonly used with Bernoulli units. Here, we consider an alternative member of exponential family RBM with leaky rectified linear units -- called leaky RBM. We first study the joint and marginal distributions of leaky RBM under different leakiness, which provides us important insights by connecting the leaky RBM model and truncated Gaussian distributions. The connection leads us to a simple yet efficient method for sampling from this model, where the basic idea is to anneal the leakiness rather than the energy; -- i.e., start from a fully Gaussian/Linear unit and gradually decrease the leakiness over iterations. This serves as an alternative to the annealing of the temperature parameter and enables numerical estimation of the likelihood that are more efficient and more accurate than the commonly used annealed importance sampling (AIS). We further demonstrate that the proposed sampling algorithm enjoys faster mixing property than contrastive divergence algorithm, which benefits the training without any additional computational cost.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.