An Improved Approach for Prediction of Parkinson's Disease using Machine Learning Techniques
Auteurs : Kamal Nayan Reddy Challa, Venkata Sasank Pagolu, Ganapati Panda, Babita Majhi
Résumé : Parkinson's disease (PD) is one of the major public health problems in the world. It is a well-known fact that around one million people suffer from Parkinson's disease in the United States whereas the number of people suffering from Parkinson's disease worldwide is around 5 million. Thus, it is important to predict Parkinson's disease in early stages so that early plan for the necessary treatment can be made. People are mostly familiar with the motor symptoms of Parkinson's disease, however, an increasing amount of research is being done to predict the Parkinson's disease from non-motor symptoms that precede the motor ones. If an early and reliable prediction is possible then a patient can get a proper treatment at the right time. Nonmotor symptoms considered are Rapid Eye Movement (REM) sleep Behaviour Disorder (RBD) and olfactory loss. Developing machine learning models that can help us in predicting the disease can play a vital role in early prediction. In this paper, we extend a work which used the non-motor features such as RBD and olfactory loss. Along with this the extended work also uses important biomarkers. In this paper, we try to model this classifier using different machine learning models that have not been used before. We developed automated diagnostic models using Multilayer Perceptron, BayesNet, Random Forest and Boosted Logistic Regression. It has been observed that Boosted Logistic Regression provides the best performance with an impressive accuracy of 97.159 % and the area under the ROC curve was 98.9%. Thus, it is concluded that these models can be used for early prediction of Parkinson's disease.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.