Regression Trees and Random forest based feature selection for malaria risk exposure prediction

Auteurs : Bienvenue Kouwayè

Résumé : This paper deals with prediction of anopheles number, the main vector of malaria risk, using environmental and climate variables. The variables selection is based on an automatic machine learning method using regression trees, and random forests combined with stratified two levels cross validation. The minimum threshold of variables importance is accessed using the quadratic distance of variables importance while the optimal subset of selected variables is used to perform predictions. Finally the results revealed to be qualitatively better, at the selection, the prediction , and the CPU time point of view than those obtained by GLM-Lasso method.

Soumis à arXiv le 24 Jui. 2016

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.