Virtual Worlds as Proxy for Multi-Object Tracking Analysis
Auteurs : Adrien Gaidon, Qiao Wang, Yohann Cabon, Eleonora Vig
Résumé : Modern computer vision algorithms typically require expensive data acquisition and accurate manual labeling. In this work, we instead leverage the recent progress in computer graphics to generate fully labeled, dynamic, and photo-realistic proxy virtual worlds. We propose an efficient real-to-virtual world cloning method, and validate our approach by building and publicly releasing a new video dataset, called Virtual KITTI (see http://www.xrce.xerox.com/Research-Development/Computer-Vision/Proxy-Virtual-Worlds), automatically labeled with accurate ground truth for object detection, tracking, scene and instance segmentation, depth, and optical flow. We provide quantitative experimental evidence suggesting that (i) modern deep learning algorithms pre-trained on real data behave similarly in real and virtual worlds, and (ii) pre-training on virtual data improves performance. As the gap between real and virtual worlds is small, virtual worlds enable measuring the impact of various weather and imaging conditions on recognition performance, all other things being equal. We show these factors may affect drastically otherwise high-performing deep models for tracking.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.