Off-policy evaluation for slate recommendation
Auteurs : Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík, John Langford, Damien Jose, Imed Zitouni
Résumé : This paper studies the evaluation of policies which recommend an ordered set of items based on some context---a common scenario in web search, ads, and recommender systems. We develop a novel technique to evaluate such policies offline using logged past data with negligible bias. Our method builds on the assumption that the observed quality of the entire recommended set additively decomposes across items, but per-item quality is not directly observable, and we might not be able to model it from the item's features. Empirical evidence reveals that this assumption fits many realistic scenarios and theoretical analysis shows that we can achieve exponential savings in the amount of required data compared with na\"ive unbiased approaches.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.