Fairness Constraints: A Mechanism for Fair Classification
Auteurs : Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, Krishna P. Gummadi
Résumé : Automated data-driven decision systems are ubiquitous across a wide variety of online services, from online social networking and e-commerce to e-government. These systems rely on complex learning methods and vast amounts of data to optimize the service functionality, satisfaction of the end user and profitability. However, there is a growing concern that these automated decisions can lead to user discrimination, even in the absence of intent. In this paper, we introduce fairness constraints, a mechanism to ensure fairness in a wide variety of classifiers in a principled manner. Fairness prevents a classifier from outputting predictions correlated with certain sensitive attributes in the data. We then instantiate fairness constraints on three well-known classifiers -- logistic regression, hinge loss and support vector machines (SVM) -- and evaluate their performance in a real-world dataset with meaningful sensitive human attributes. Experiments show that fairness constraints allow for an optimal trade-off between accuracy and fairness.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.