Robust Defibrillator Deployment Under Cardiac Arrest Location Uncertainty via Row-and-Column Generation

Auteurs : Timothy C. Y. Chan, Zuo-Jun Max Shen, Auyon Siddiq

55 pages

Résumé : Sudden cardiac arrest is a significant public health concern. Successful treatment of cardiac arrest is extremely time sensitive, and use of an automated external defibrillator (AED) where possible significantly increases the probability of survival. Placement of AEDs in public locations can improve survival by enabling bystanders to treat victims of cardiac arrest prior to the arrival of emergency medical responders. However, since the exact locations of future cardiac arrests cannot be known a priori, AEDs must be placed strategically in public locations to ensure their accessibility in the event of an out-of-hospital cardiac arrest emergency. In this paper, we propose a data-driven optimization model for deploying AEDs in public spaces while accounting for uncertainty in future cardiac arrest locations. Our approach involves discretizing a continuous service area into a large set of scenarios, where the probability of cardiac arrest at each location is itself uncertain. We model uncertainty in the spatial risk of cardiac arrest using a polyhedral uncertainty set that we calibrate using historical cardiac arrest data. We propose a solution technique based on row-and-column generation that exploits the structure of the uncertainty set, allowing the algorithm to scale gracefully with the total number of scenarios. Using real cardiac arrest data from the City of Toronto, we conduct an extensive numerical study on AED deployment public locations. We find that hedging against cardiac arrest location uncertainty can produce AED deployments that outperform a intuitive sample average approximation by 9 to 15%, and cuts the performance gap with respect to an ex-post model by half. Our findings suggest that accounting for cardiac arrest location uncertainty can lead to improved accessibility of AEDs during cardiac arrest emergencies and the potential for improved survival outcomes.

Soumis à arXiv le 15 Jul. 2015

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.