Efficient solutions for weight-balanced partitioning problems

Auteurs : Steffen Borgwardt, Shmuel Onn

Résumé : We prove polynomial-time solvability of a large class of clustering problems where a weighted set of items has to be partitioned into clusters with respect to some balancing constraints. The data points are weighted with respect to different features and the clusters adhere to given lower and upper bounds on the total weight of their points with respect to each of these features. Further the weight-contribution of a vector to a cluster can depend on the cluster it is assigned to. Our interest in these types of clustering problems is motivated by an application in land consolidation where the ability to perform this kind of balancing is crucial. Our framework maximizes an objective function that is convex in the summed-up utility of the items in each cluster. Despite hardness of convex maximization and many related problems, for fixed dimension and number of clusters, we are able to show that our clustering model is solvable in time polynomial in the number of items if the weight-balancing restrictions are defined using vectors from a fixed, finite domain. We conclude our discussion with a new, efficient model and algorithm for land consolidation.

Soumis à arXiv le 24 Mar. 2015

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.