Replicator Dynamics of of Cancer Stem Cell; Selection in the Presence of Differentiation and Plasticity
Auteurs : Kamran Kaveh, Mohammad Kohandel, Siv Sivaloganathan
Résumé : Stem cells have the potential to produce lineages of non-stem cell populations (differentiated cells) via a ubiquitous hierarchal division scheme. Differentiation of a stem cell into (partially) differentiated cells can happen either symmetrically or asymmetrically. The selection dynamics of a mutant cancer stem cell should be investigated in the light of a stem cell proliferation hierarchy and presence of a non-stem cell population. By constructing a three-compartment Moran-type model composed of normal stem cells, mutant (cancer) stem cells and differentiated cells, we derive the replicator dynamics of stem cell frequencies where asymmetric differentiation and differentiated cell death rates are included in the model. We determine how these new factors change the conditions for a successful mutant invasion and discuss the variation on the steady state fraction of the population as different model parameters are changed. By including the phenotypic plasticity/dedifferentiation, in which a progenitor/differentiated cell can transform back into a cancer stem cell, we show that the effective fitness of mutant stem cells is not only determined by their proliferation and death rates but also according to their dedifferentiation potential. By numerically solving the model we derive the phase diagram of the advantageous and disadvantageous phases of cancer stem cells in the space of proliferation and dedifferentiation potentials. The result shows that at high enough dedifferentiation rates even a previously disadvantageous mutant can take over the population of normal stem cells. This observation has implications in different areas of cancer research including experimental observations that imply metastatic cancer stem cell types might have lower proliferation potential than other stem cell phenotypes while showing much more phenotypic plasticity and can undergo clonal expansion.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.