Fence - An Efficient Parser with Ambiguity Support for Model-Driven Language Specification
Auteurs : Luis Quesada, Fernando Berzal, Francisco J. Cortijo
Résumé : Model-based language specification has applications in the implementation of language processors, the design of domain-specific languages, model-driven software development, data integration, text mining, natural language processing, and corpus-based induction of models. Model-based language specification decouples language design from language processing and, unlike traditional grammar-driven approaches, which constrain language designers to specific kinds of grammars, it needs general parser generators able to deal with ambiguities. In this paper, we propose Fence, an efficient bottom-up parsing algorithm with lexical and syntactic ambiguity support that enables the use of model-based language specification in practice.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.