The Gauss-Bonnet Theorem for the noncommutative two torus
Auteurs : Alain Connes, Paula Tretkoff
Résumé : In this paper we show that the value at zero of the zeta function of the Laplacian on the non-commutative two torus, endowed with its canonical conformal structure, is independent of the choice of the volume element (Weyl factor) given by a (non-unimodular) state. We had obtained, in the late eighties, in an unpublished computation, a general formula for this value at zero involving modified logarithms of the modular operator of the state. We give here the detailed computation and prove that the result is independent of the Weyl factor as in the classical case, thus proving the analogue of the Gauss-Bonnet theorem for the noncommutative two torus.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.