Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins
Authors: Susanne Moelbert, Eldon Emberly, Chao Tang
Abstract: Hydrophobicity is thought to be one of the primary forces driving the folding of proteins. On average, hydrophobic residues occur preferentially in the core, whereas polar residues tends to occur at the surface of a folded protein. By analyzing the known protein structures, we quantify the degree to which the hydrophobicity sequence of a protein correlates with its pattern of surface exposure. We have assessed the statistical significance of this correlation for several hydrophobicity scales in the literature, and find that the computed correlations are significant but far from optimal. We show that this less than optimal correlation arises primarily from the large degree of mutations that naturally occurring proteins can tolerate. Lesser effects are due in part to forces other than hydrophobicity and we quantify this by analyzing the surface exposure distributions of all amino acids. Lastly we show that our database findings are consistent with those found from an off-lattice hydrophobic-polar model of protein folding.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.